Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors.
نویسندگان
چکیده
Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)(5)]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.
منابع مشابه
Neuropeptide S: a novel regulator of pain-related amygdala
23 Amygdala plasticity is an important contributor to the emotional-affective dimension of 24 pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through 25 actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally 26 acting NPS, but site and mechanism of action remain to be determined. This is the first 27 electrophysiological analysis of p...
متن کاملNasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala
Recently discovered neuropeptide S (NPS) has anxiolytic and pain-inhibiting effects in rodents. We showed previously that NPS increases synaptic inhibition of amygdala output to inhibit pain behaviors. The amygdala plays a key role in emotional-affective aspects of pain. Of clinical significance is that NPS can be applied nasally to exert anxiolytic effects in rodents. This study tested the nov...
متن کاملEssential role of endogenous calcitonin gene‐related peptide in pain‐associated plasticity in the central amygdala
The role of the neuropeptide calcitonin gene-related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulat...
متن کاملGlutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملHomer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors
BACKGROUND Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2013